

## **Training Objectives**

- 1. Explain the challenges of sizing heavy hex nuts/bolts using traditional methods.
- Correctly identify nut and stud sizes using the HexSizer<sup>®</sup> Heavy Hex Gauge<sup>™</sup>.
- Distinguish between nominal, minimum, and actual ASME size tolerances.
- Apply the tool during job walks, maintenance, and shutdown scenarios.
- 5. Reduce downtime, errors, and safety risks, selecting the correct size tools first time.



#### Module 1:

## Introduction to Heavy Hex Fasteners

- Overview of ASME 18.2.2 standards (inch & metric)
- Difference between standard, heavy hex, and SAE hex nuts
- Importance of correct sizing in industrial bolting
- Case study: cost of downtime when the wrong socket is brought to the job



# There are standard sizes set by ASME

**ASME 18.2.2** 

Note that there is a Min and Max size.

Reprinted from ASME B18.2.2-2022 Nuts for General Applications: Machine Screw Nuts; and Hex, Square, Hex Flange, and Coupling Nuts (Inch Series), by permission of The American Society of Mechanical Engineers. All rights reserved.

| Nominal<br>Size | Basic<br>Major<br>Diameter<br>of Thread | Width Across Flats, F [Note (1)] |       |       | Width<br>Across<br>Corners, G<br>[Note (2)] |       | Thickness Heavy<br>Hex Nuts, H |       |       | Thickness H<br>Hex Jam Nut |       |
|-----------------|-----------------------------------------|----------------------------------|-------|-------|---------------------------------------------|-------|--------------------------------|-------|-------|----------------------------|-------|
|                 |                                         | Basic                            | Min.  | Max.  | Min.                                        | Max.  | Basic                          | Min.  | Max.  | Basic                      | Min.  |
| 1/4             | 0.2500                                  | 1/2                              | 0.488 | 0.500 | 0.556                                       | 0.577 | 15/64                          | 0.218 | 0.250 | 11/64                      | 0.156 |
| 5/16            | 0.3125                                  | %16                              | 0.546 | 0.562 | 0.622                                       | 0.650 | 19/64                          | 0.280 | 0.314 | 13/64                      | 0.186 |
| 3/8             | 0.3750                                  | 11/16                            | 0.669 | 0.688 | 0.763                                       | 0.794 | 23/64                          | 0.341 | 0.377 | 15/64                      | 0.216 |
| 7/16            | 0.4375                                  | 3/4                              | 0.728 | 0.750 | 0.830                                       | 0.866 | 27/64                          | 0.403 | 0.441 | 17/64                      | 0.247 |
| 1/2             | 0.5000                                  | 7/8                              | 0.850 | 0.875 | 0.969                                       | 1.010 | 31/64                          | 0.464 | 0.504 | 19/64                      | 0.277 |
| 9/16            | 0.5625                                  | 15/16                            | 0.909 | 0.938 | 1.037                                       | 1.083 | 35/64                          | 0.526 | 0.568 | 21/64                      | 0.307 |
| 5/8             | 0.6250                                  | 11/16                            | 1.031 | 1.062 | 1.175                                       | 1.227 | 39/64                          | 0.587 | 0.631 | 23/64                      | 0.337 |
| 3/4             | 0.7500                                  | 11/4                             | 1.212 | 1.250 | 1.382                                       | 1.443 | 47/64                          | 0.710 | 0.758 | 27/64                      | 0.398 |
| 7/8             | 0.8750                                  | 17/16                            | 1.394 | 1.438 | 1.589                                       | 1.660 | 55/64                          | 0.833 | 0.885 | 31/64                      | 0.458 |
| 1               | 1.0000                                  | 15/2                             | 1.575 | 1.625 | 1.796                                       | 1.876 | 63/64                          | 0.956 | 1.012 | 35/64                      | 0.519 |
| 11/8            | 1.1250                                  | 113/16                           | 1.756 | 1.812 | 2.002                                       | 2.093 | 17/64                          | 1.079 | 1.139 | 39/64                      | 0.579 |
| 11/4            | 1.2500                                  | 2                                | 1.938 | 2.000 | 2.209                                       | 2.309 | 17/32                          | 1.187 | 1.251 | 23/32                      | 0.687 |
| 13/8            | 1.3750                                  | 23/16                            | 2.119 | 2.188 | 2.416                                       | 2.526 | 111/32                         | 1.310 | 1.378 | 25/32                      | 0.747 |
| 11/2            | 1.5000                                  | 23/8                             | 2.300 | 2.375 | 2.622                                       | 2.742 | 115/32                         | 1.433 | 1.505 | 27/32                      | 0.808 |
| 15/8            | 1.6250                                  | 29/16                            | 2.481 | 2.562 | 2.828                                       | 2.959 | 119/32                         | 1.556 | 1.632 | 29/32                      | 0.868 |



### Who sets the standard sizes?

### Common Sizes - SAE



### Heavy Hex - ASME



# Heavy Hex Size Nuts & Glove





### Q: Importance of correct sizing in industrial bolting?

A: To show up with the correct size tools.

#### Common Sizes - SAE

- One person working by themselves.
- Usually the work is in inert surroundings.
- Stopping work doesn't affect others.
- Usually no real time-line to adhere to.
- Down time doesn't equal lost revenue.

### Heavy Hex - ASME

- Technicians work in pairs with additional support staff.
- Stopping the job to go back to the shop will stop the work of others.
- The time-line is breached.
- Downtime costs the plant!



### Q: Importance of correct sizing in industrial bolting?

A: To show up with the correct size tools.

#### Common Sizes - SAE



### Heavy Hex - ASME





### How much is minute of downtime worth?

Near me is the Chevron El Segundo Refinery that according to Google, primarily produces transportation fuels: gasoline, jet fuel, and diesel. It also produces other products like fuel oils, petroleum coke, and LPG. The refinery has a capacity of 290,000 barrels of crude oil per day and is a major supplier of transportation fuels in Southern California.

- 290,000 × today's gas price (daily revenue) = \$A
- \$A (daily revenue) ÷ 24 = hourly revenue
- Hourly revenue ÷ 60 = revenue per minute

How many minutes does it take for you to drive back to the shop and pick up the correct socket?

Revenue per minute × minutes to and from the shop = \$ \_\_\_\_\_

Trust me, someone is looking at that number!



#### Module 2:

# The Problem with Traditional Measurement (Demonstration)

#### Hands-on:

Attempting "across-the-flats" measurement with a stud in place

#### Discussion:

Tolerance ranges and why a 2" nut may measure 1.938"

#### Interactive:

Guessing nut size with calipers or tape, then comparing to actual standard



### I can't measure across both flats?





### I can't measure across both flats?





# The stud is in the way?





# The stud is in the way?





# I'll try resting my rule in the middle.





# Try this: Guess what size this is?





# How much difference does the min and max size make?





### It's close. But this is not the correct size!

Supposed to be 4-5/8" (4.625)



But I measure 4-31/64" (4.475)





### So I look for a workaround.

Can't measure across the flats.



The stud gets in the way.





# Module 3: Introducing the HexSizer® (Tool Familiarization)

#### Parts of the HexSizer®

- Nut measurement (single flat method)
- Stud size gauge
- Thread pitch gauge (if included in kit)

Materials & durability (anodized 6061 aluminum, heat resistance)

Storage methods (lanyard, wallet, tool pouch)



# Measure the nut to get the wrench size.





### Measure the stud size.





# Find the OD thread pitch.





## Find the ID thread pitch with a profile.





## Find the ID thread pitch with a profile.





# Fits in your wallet.





### There are 2 sizes of HexSizers.









Metric Nut

| Service | Sauge | Service | Serv

Measures up to 4-5/8"

Measures up to 6-1/8"

Fits on your lanyard.



#### Module 4:

### Using the HexSizer® in Practice (Hands-On)

**Exercise 1:** Measure loose nuts and bolts

Exercise 2: Measure installed nuts on studs (simulation board)

Exercise 3: Match nut to stud size

**Exercise 4:** Perform a "job walk" simulation—use HexSizer to create a correct tool list for a mock work order



#### Module 5:

### Common Mistakes and Troubleshooting

#### Measurement is between the tick lines

- That is because the nut is undersized. Use the socket
- Or wrench size from the last tick line it went past.

#### Misreading tick lines

Use your finger to follow the tick line or use a small magnifier.

#### Confusing Metric vs Inch sizes

Some versions have inch on front and Metric on back so just turn it over.

#### Relying on calipers or fractional ticks instead of standard marks.

Most jobs use standard sizes. I find high value in job walks. Fit test the wrench before the job starts.

